Thermodynamics and Statistical Physics

Part I - Thermodynamics

Resit

Wednesday, April 13 2022, 8:30-10:30, Aletta Jacobshal

The total number of points that can be reached in this exam is 90 .

Final grade $=($ points $/ 10)+1$.

PROBLEM 1

Score: $a+b+c+d+e . .=4+4+6+6+10=30$
3) Describe the third law of thermodynamics in your own words. (4 pt)

Ef Explain why reversible heat engines have the highest efficiency and why efficiency is always smaller than 100\%. (4 pt)
A) What is a meant by the term "reversible process" in thermodynamics and why is it relevant? (6 pt)
et) Consider a gas of molecular hydrogen $\left(\mathrm{H}_{2}\right)$. We can assume it behaves as an ideal gas. Explain, under which conditions the molar heat capacity equals to $C_{v, m}=5 / 2 R$. $(6 \mathrm{pt}) \in \frac{5}{2} R$
8\% A sample consisting of $2 \mathrm{~mol} \mathrm{H}_{2}$ is expanded isothermally at $0^{\circ} \mathrm{C}$ from $8 \mathrm{dm}^{3}$ to $27 \mathrm{dm}^{3}$ i) reversibly, ii) against a constant external pressure (which is equal to the final pressure of the gas) and iii) freely, against zero external pressure. For all processes, calculate $\Delta U, w$ and q. You can assume H_{2} to behave as an ideal gas. (Hint: How does the internal energy of an ideal gas depend on volume and pressure?) (10 pt)

PROBLEM 2

Score: $a+b+c=12+12+6=30$
a) The number of gas molecules per unit volume that have speeds between v and $d v$ and travel under angles between θ and $d \theta$ to a chosen direction is given by $n f(v) d v \frac{1}{2} \sin \theta d \theta . f(v)$ is the speed distribution of the molecules. Use this information to determine the number of molecules hitting a unit area of wall in unit time (use a sketch!). (12 pt)
b) Use kinetic theory and the result from a) to define the coefficient of viscosity of a gas. Show that this coefficient of viscosity has the following proportionality:

$$
\eta \propto n m \lambda\langle v\rangle
$$

where n is particle density of the gas, m is the particle mass, λ is the mean free path of the gas molecules and $\langle v\rangle$ is their mean speed. Use a sketch! ($\mathbf{1 2} \mathbf{~ p t)}$
c) It is experimentally found, that over a wide pressure range, viscosity is independent of pressure. Below which approximate pressure will viscosity become pressure dependent when measured with a device from 1660, e.g. a pendulum in an air-filled vessel (for air at $293 \mathrm{~K}, \eta=18.2 \mu \mathrm{~N} \mathrm{~s} \mathrm{~m}{ }^{-2}$)? Hint:

The dimensions of the experiment are key, here. You may assume a realistic order of magnitude of the pendulum size. (6 pt)

PROBLEM 3

Score: $a+b+c+d+\ldots=10+10+10=30$
Consider 1 mol of ideal gas in a state A with volume $V_{A}=V_{0}$, pressure $p_{A}=p_{0}$ and temperature $T_{A}=$ $T_{0}=300 \mathrm{~K}$. Consider the following thermodynamic cycle:

$$
A \rightarrow B \rightarrow C \rightarrow A
$$

Step 1: reversible adiabatic expansion from A to B.
Stap 2: reversible compression at constant volume from B to C.
Stap 3: reversible compression at constant pressure from C to A.
In state B, the gas has a pressure p_{B} and a volume $V_{B}=2 V_{0}$. In state C, the gas has a pressure $p_{C}=p_{0}$ and a volume $V_{C}=2 V_{0}$. The heat capacities are given by $C_{p, m}=\frac{7}{2} R$ and $C_{p, m}-C_{V, m}=R$.
a) Sketch this thermodynamic cycle in a $p-V$ diagram. Indicate in which steps heat flows and in which direction (into the system and out of the system). (10 pt)
b) Show that for the reversible adiabatic expansion of an ideal gas, initial and final temperature are related by $T_{f}=T_{i}\left(\frac{V_{2}}{V_{f}}\right)^{1 / c}$ with $c=C_{V, m} / R^{\prime} \cdot(10 \mathrm{pt})$
c) Show that the temperatures of the system in states B and C are $T_{B}=227.4 \mathrm{~K}$ and $T_{C}=600 \mathrm{~K} .(10 \mathrm{pt})$

Constants:

$$
600 \cdots\left(\frac{1}{9}\right)
$$

Avogardro's number: $N_{A}=6.0210^{23} \mathrm{~mol}^{-1}$
Boltzmann constant: $\mathrm{k}_{\mathrm{B}}=1.38110^{-23} \mathrm{~J} \backslash \mathrm{~K}$
$\left(\frac{x}{y}\right)=\binom{609}{9+1}^{1 /}$
Gas constant: $\quad \mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Atomic mass unit (u): $\mathrm{m}_{\mathrm{u}}=1.6710^{-27 \mathrm{~kg}}$
Electronvolt: $\quad 1 \mathrm{eV}=1.610^{-19} \mathrm{~J}$

